Subscribe
Logo
Logo
  • Topics Icon Topics
    • AI Icon AI
    • Banking Icon Banking
    • Blockchain/DeFi Icon Blockchain/DeFi
    • Embedded Finance Icon Embedded Finance
    • Fraud/Identity Icon Fraud/Identity
    • Investing Icon Investing
    • Lending Icon Lending
    • Payments Icon Payments
    • Regulation Icon Regulation
    • Startups Icon Startups
  • Podcasts Icon Podcasts
  • Products Icon Products
    • Webinars Icon Webinars
    • White Papers Icon White Papers
  • TechWire Icon TechWire
  • Search
  • Subscribe
Reading
How AI & Machine Learning Can Fix the Broken Credit Scoring System
ShareTweet
Home
Peer to Peer Lending
How AI & Machine Learning Can Fix the Broken Credit Scoring System

How AI & Machine Learning Can Fix the Broken Credit Scoring System

Fintech Nexus Staff·
Peer to Peer Lending
·Jul. 27, 2017·4 min read

Editor’s Note: This is a guest post from Marc Stein, CEO at Underwrite.ai and Principal at Artificial Intelligence Capital Management. A longtime entrepreneur and startup CTO, he cofounded the first auction platform for student loans, College Loan Market, a marketplace for equipment leasing, LeaseQ, and ScholarshipWS, the search engine that drives many of the largest college scholarship search sites. He also served as CTO at Y2M Networks, sold to Viacom and the Student Loan Consolidation Program sold to JP Morgan Chase, and as Global CTO for the Giving Group, a UK entity that operates the world’s largest peer to peer charitable fundraising service. In his spare time, he works on applications of artificial intelligence towards problems in cancer diagnosis and genetic biomarker identification.]

I was recently on a panel at Money 20/20 in Copenhagen with the intriguing title “Credit scoring is broken: Striving for fairness and accuracy in a data-rich world”.

The question stuck with me beyond the panel itself. Is credit scoring broken? If so, when did it break? Who broke it? And, most importantly, why is it broken?

In a sense, the credit scoring system exists to minimize risk to lenders by focusing on the lending of money to people who have proven themselves to be low risks. The dominant scoring methodology in developed economies is solely focused on how people repay prior loans, how many loans they’ve already taken, and how many times they’ve applied for credit.

This works to simply exclude those without existing credit.

I recently worked on a study for a large lender that was testing into their decline population. This gave me some insight into the performance of thin and no-file applicants without FICO scores. What was most interesting about the results was that the overall portfolio had a charge-off rate of 10%, with the lowest performing cohort charging off at 22%. The FICO unscored group, who would almost always be denied credit, charged off at 14%.

So, in fact, the applicants with no score were quite profitable if lent to at the higher priced tiers and outperformed the low end of the approved spectrum.

But does this mean that the credit scoring system is broken? In itself, no. Lenders can loan to applicants with FICO scores at or above 700 with a fairly solid understanding of repayment risk. This leads to the extension of government subsidized credit to the lowest risk portion of the credit spectrum.

But this divides the society into three classes of people. Those with access to cheap credit from subsidized sources, those with access to expensive credit from leveraged sources, and those with no access to credit.

The disparity in credit access is baked into the credit scoring method. But why did this happen?

I propose a simple explanation. In order to create models that can be efficiently implemented, the problem of credit risk has been oversimplified. The current methodology in widespread use seeks to model risk using linear models with a small number of inputs.

Typical underwriting today consists of FICO, DTI, trade lines (e.g. 30 day late counts), and inquiry counts as inputs into linear regression based models. This works fairly well for the subset of the population with FICO scores at or above 700. But the further that you fall below the 700 FICO line, the less efficacy the model has. If you understand that credit risk is an inherently nonlinear problem, then this makes perfect sense. When you attempt to model a nonlinear problem using linear techniques you divide the problem set into two cohorts, a predictable set using the linear model, and a chaotic set. This chaotic set is the subprime space.

To effectively model the risk of subprime lending, you need to do two things. Input more data into the models and use nonlinear techniques to model the problem. At Underwrite.ai, we’ve found that whereas we can efficiently model prime lending risk with 40 attributes, we need thousands of attributes to model subprime risk with equal efficacy. For example, how someone pays apartment rent and utility bills is not especially predictive in the prime space, but it’s highly predictive in the subprime space.

We’re not going to address the issues of credit disparity and the corollary problem of income disparity until we start thinking about credit risk differently. But, this create tremendous opportunities for fintech entrepreneurs around the world. In the US, 70% of the population has well populated credit files and 50% of the files have score at or above 700. This means that 50% of the US population is underserved or unserved. In China, the picture is reversed. Only 30% of the population have credit files and only about 10% actually contain specific repayment data. This means that 90% of the 1.4 billion people in China are underserved or unserved in terms of credit access.

Banks will be slow to address the underserved markets due to their inherent aversion to risk. The P2P marketplace has largely focused on providing greater efficiency and price advantage to the same market served by banks. This creates a massive opportunity for those who can understand the nonlinear nature of the credit problem and deploy capital into these underserved markets. I’ve focused my work at Underwrite.ai on solving the technical problems of better understanding risk in underserved markets through machine learning, but the real impact will be driven by a new generation of startups focused on delivering credit to these markets.

  • Fintech Nexus Staff
    Fintech Nexus Staff

    This piece was created by one of our content team members. Reach us at [email protected]

    View all posts
Tags
artificial intelligencecredit scoringMachine Learning
Related

Banks slowly preparing for AI, open banking: Sopra Digital Banking Experience Report

Editorial Cartoon - Fintech Nexus Newsletter

Editorial Cartoon for March 7, 2024

Laura Kornhauser, CEO and Co-Founder of Stratyfy on advanced AI models for underwriting

Relationship-based services as a customer attraction and retention tool

Popular Posts

Today:

  • Paraform Founders, Jeffrey Li and John KimFunded: Paraform raises $20M to put top recruiters, not AI, in the driver’s seat Jun. 27, 2025
  • Ahead of AIOutsmart Pricing Objections Before They Arise with AI Jul. 1, 2025
  • Revised-AI-InvoiceAI Faces Skepticism. Startups Say: OK, Pay When it Works Jun. 25, 2025
  • Email-AI-pieceAvatar CEOs Have Entered the Meeting Jun. 18, 2025
  • TechNexus The AI IssueSteal Like an AI? Defining Fair Use & Creativity Jun. 25, 2025
  • GreenliteAI-Alex-WillGreenlite AI is on a mission to revolutionize banking compliance Jun. 10, 2025
  • PayabliFunded: Payments infrastructure co Payabli lands $28M Series B to AI-ify Jun. 20, 2025
  • TechNexus The AI IssueThe AI Paradox Jun. 18, 2025
  • WP-Funded2Funded: Maze nabs $25M Series A to stop cloud breaches before they start Jun. 13, 2025
  • Current stablecoin adoptionWhy Banks (and Fintechs) Need to Embrace Stablecoins Today Jun. 12, 2025

This month:

  • WP UmbrellaTo Bank or Not to Bank: The ILC Question Jun. 5, 2025
  • GreenliteAI-Alex-WillGreenlite AI is on a mission to revolutionize banking compliance Jun. 10, 2025
  • DanMurphy-FN-headshotCFPB’s Next Open Banking Battle Begins Jun. 3, 2025
  • Current stablecoin adoptionWhy Banks (and Fintechs) Need to Embrace Stablecoins Today Jun. 12, 2025
  • ai-work-nexusWalkMe Vets Declare War on SaaS Bloat with $10M Seed for Autonomous Agents Jun. 10, 2025
  • Jon StonaTips from Airwallex x McLaren on Making the Best of a Fintech Sponsorship  Jun. 18, 2025
  • Ironclad State of AI ReportThe Economics of AI Trust Jun. 11, 2025
  • Email-AI-pieceAvatar CEOs Have Entered the Meeting Jun. 18, 2025
  • Ben Hemani, Founding Partner at Bison VenturesThe Risk and Reward of Betting Big on AI’s Next Frontier Jun. 4, 2025
  • TechNexus The AI IssueMeeker’s AI Bombshell + The VC Betting on AI Reshaping The Physical World  Jun. 4, 2025

  • About
  • Contact
  • Disclaimer
  • Privacy Policy
  • Terms
Subscribe
Copyright © 2025 Fintech Nexus
  • Topics
    • AI
    • Banking
    • Blockchain/DeFi
    • Embedded Finance
    • Fraud/Identity
    • Investing
    • Lending
    • Payments
    • Regulation
    • Startups
  • Podcasts
  • Products
    • Webinars
    • White Papers
  • TechWire
  • Contact Us
Start typing to see results or hit ESC to close
lis digital banking USA Lending Club UK
See all results